翻訳と辞書 |
Hermite's identity : ウィキペディア英語版 | Hermite's identity
In mathematics, Hermite's identity, named after Charles Hermite, gives the value of a summation involving the floor function. It states that for every real number ''x'' and for every positive integer ''n'' the following identity holds:〔.〕〔.〕 : ==Proof== Split into its integer part and fractional part, . There is exactly one with : By subtracting the same integer from inside the floor operations on the left and right sides of this inequality, it may be rewritten as : Therefore, : and multiplying both sides by gives : 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Hermite's identity」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|